RadiobookA

радиолюбительский портал

 
Главная » Радиолюбительская хрестоматия » Занимательная радиотехника. Проходит ли ток через конденсатор?


Топ 10!

Календарь обновлений

«    Март 2024    »
ПнВтСрЧтПтСбВс
 123
45678910
11121314151617
18192021222324
25262728293031

Случайная публикация

  • Однотактный трансформаторный усилитель мощности для радиоприемника прямого усиления...
    Все описанные выше схемы приемников хорошо работают на головные телефоны (наушники) или электродинамический капсюль ДЭМ-4М. Чтобы приемник стал действительно «громкоговорящим», в него нужно включить
  • Переключатель трех гирлянд...
    Более эффектно будет освещаться новогодняя елка, на ветвях которой разместятся три гирлянды ламп и каждая из них начнет вспыхивать через определенные промежутки времени. Автомат для такого управления
  • Кашкаров А. П. - Популярный справочник радиолюбителя (2008)...
      Как заменить радиоэлементы? Как подобрать отечественные компоненты вместо зарубежных? Как быстро и просто подключить силовые оконечные коммутационные узлы? Об этом и многом другом
  • Супергетеродин на пяти транзисторах...
    Чувствительность этого приемника в диапазоне длинных волн не хуже: 8—10 мв/м. Питается приемник от батареи «Крона» или 7Д-0,1 потребляя от нее ток в среднем 8 ма.
  • Усилитель ЗЧ на цифровой микросхеме...
    При разработке простого усилителя для стереотелефонов ТДС-22, который можно было бы установить, скажем, в самодельном плейере, малогабаритном УКВ-FM приёмнике, слуховом аппарате, автору удалось
  • ТА-1142...
    Телефонный аппарат ТА-1142...
  • Радиостанция Eль-FM27CB...
    Главное отличие этой конструкции от множества других аналогичных в том, что в радиостанции, приемный тракт которой построен по супергетеродинной схеме, имеется только один общий гетеродин с

 

Радиолюбительская хрестоматия

 
 

Занимательная радиотехника. Проходит ли ток через конденсатор?

 
 
 

Проходит электрический ток через конденсатор или не проходит? Повседневный радиолюбительский опыт убедительно говорит, что постоянный ток не проходит, а переменный проходит.

Это легко подтвердить опытами. Можно зажечь лампочку, присоединив ее к сети переменного тока через конденсатор. Громкоговоритель или телефонные трубки будут продолжать работать, если их присоединить к приемнику не непосредственно, а через конденсатор.

Конденсатор представляет собой две или несколько металлических пластин, разделенных диэлектриком. Этим диэлектриком чаще всего бывает слюда, воздух или керамика, являющиеся наилучшими изоляторами. Вполне естественно, что постоянный ток не может пройти через такой изолятор. Но почему же проходит через него переменный ток? Это кажется тем более странным, что такая же самая керамика в виде, например, фарфоровых роликов прекрасно изолирует провода переменного тока, а слюда прекрасно выполняет функции изолятора в паяльниках, электроутюгах и других нагревательных приборах, исправно работающих от переменного тока.


Посредством некоторых опытов мы могли бы «доказать» еще более странный факт: если в конденсаторе заменить диэлектрик со сравнительно плохими изоляционными свойствами другим диэлектриком, который является лучшим изолятором, то свойства конденсатора изменятся так, что прохождение переменного тока через конденсатор будет не затруднено, а, наоборот, облегчено. Например, если включить лампочку в цепь переменного тока через конденсатор с бумажным диэлектриком и затем заменить бумагу таким прекрасным изолятором; как стекло или фарфор такой же толщины, то лампочка начнет гореть ярче. Подобный опыт позволит прийти к заключению, что переменный ток не только проходят через конденсатор, но что он к тому же проходит тем легче, чем лучшим изолятором является его диэлектрик.

Однако, несмотря на всю кажущуюся убедительность подобных опытов, электрический ток — ни постоянный, ни переменный — через конденсатор не проходит. Диэлектрик, разделяющий пластины конденсатора, служит надежной преградой на пути тока, каким бы он ни был — переменным или постоянным. Но это еще не означает, что тока не будет и во всей той цепи, в которую включен конденсатор.

Конденсатор обладает определенным физическим свойством, которое мы называем емкостью. Это свойство состоит в способности накапливать на обкладках электрические заряды. Источник электрического тока можно грубо уподобить насосу, перекачивающему в цепи электрические заряды. Если ток постоянный, то электрические заряды перекачиваются все время в одну сторону.

Как же будет вести себя в цепи постоянного тока конденсатор?

Наш «электрический насос» будет качать заряды на одну его обкладку и откачивать их с другой обкладки. Способность конденсатора удерживать на своих обкладках (пластинах) определенную разницу количества зарядов и называется его емкостью. Чем больше емкость конденсатора, тем больше электрических зарядов может быть на одной обкладке по сравнению с другой.

В момент включения тока конденсатор не заряжен — количество зарядов на его обкладках одинаково. Но вот ток включен. «Электрический насос» заработал. Он погнал заряды на одну обкладку и начал откачивать их с другой.  Раз в цепи началось движение зарядов, значит в ней начал протекать ток. Ток будет течь до тех пор, пока конденсатор не зарядится полностью. По достижении этого предела ток прекратится.

Следовательно, если в цепи постоянного тока есть конденсатор, то после ее замыкания ток в ней будет течь столько времени сколько нужно для полного заряда конденсатора.

Если сопротивление цепи, через которую заряжается конденсатор, сравнительно невелико, то время заряда оказывается очень коротким: оно длится ничтожные доли секунды, после чего течение тока прекращается.

 

Иное дело в цепи переменного тока. В этой цепи «насос» перекачивает электрические заряды то в одну, то в другую сторону. Едва создав на одной обкладке конденсатора превышение количества зарядов по сравнению с количеством их на другой обкладке, насос начинает перекачивать их в обратно направлении. Заряды будут циркулировать в цепи непрерывно, значит в ней, несмотря на присутствие не проводящего ток конденсатора, будет существовать ток — ток заряда и разряда конденсатора.

От чего будет зависеть величина этого тока?

Под величиной тока мы понимаем количество электрических зарядов, протекающих в единицу времени через поперечное сечение проводника. Чем, больше емкость конденсатора, тем больше зарядов потребуется для его «заполнения», значит тем сильнее будет ток в цепи. Емкость конденсатора зависит от ве-, личины пластин, расстояния между ними и рода разделяющего их диэлектрика, его диэлектрической проницаемости. У фарфора диэлектрическая проницаемсклъ больше, чем у бумаги, поэтому при замене в конденсаторе бумаги фарфором ток в цепи увеличивается, хотя фарфор является лучшим изолятором, чем бумага.

Величина тока зависит также от его частоты. Чем выше частота, тем больше будет ток. Легко понять, почему это происходит, представив себе, что мы наполняем водой через трубку сосуд емкостью, например, 1 л и затем выкачиваем ее оттуда. Если этот процесс будет повторяться 1 раз в секунду, то по трубке в секунду будет проходить 2 л воды: 1 л в одну сторону и 1 л — в другую. Но если мы удвоим частоту^ процесса: будем наполнять и опорожнять сосуд 2 раза в секунду, то по трубке в секунду пройдет уже 4 л воды — увеличение частоты процесса при неизменной емкости сосуда привело к соответствующему увеличению количества воды, протекающей по трубке.

Из всего сказанного можно сделать следующие выводк: электрический ток — ни постоянный, ни переменный — через конденсатор не проходит. Но в цепи, соединяющей источник переменного тока с конденсатором, течет ток заряда и разряда этого конденсатора. Чем больше емкость конденсатора и выше частота тока, тем сильнее будет этот ток.

Эта особенность переменного тока чрезвычайно широко используется в радиотехнике. На ней основано и излучение радиоволн. Для этого мы возбуждаем в передающей антенне высокочастотный переменный ток. Но почему же ток течет в антенне, ведь она не представляет собой замкнутую цепь? Он течет потому, что между проводами антенны и противовеса или землей существует емкость. Ток в антенне представляет собой ток заряда и разряда этой емкости, этого конденсатора.

 


Здесь Ваше мнение имеет значение  -
 поставьте вашу оценку (оценили - 82 раз)
 
 

Л. В. Кубаркин и Е. А. Левитин, Занимательная радиотехника, Госэнергоиздат, 1956.



Ключевые теги: конденсатор
 
 
 
Смотри также:
 
   

 Принт-версия