RadiobookA

радиолюбительский портал

 
Главная » Радио-начинающим » Схемы и описания измерительных генераторов


Топ 10!

Календарь обновлений

«    Февраль 2017    »
ПнВтСрЧтПтСбВс
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 

Случайная публикация



Простой FM передатчик своими р ...
Начинающим радиолюбителям полезно знать, как собрать FM передатчик своими руками ...


Кто придумал светодиод?
Лет 20 тому назад о светодиодах знали только радиоэлектронщики, теперь же про ...


Приборы для проверки межвитков ...
При ремонте двигателей и генераторов, это устройство может стать очень полезным ...


Радиомаяк для грибника
Предлагаемое устройство будет полезно при выезде на природу — маяк поможет отыск ...


Автомобильный источник питания ...
Современные портативные компьютеры, так называемые, ноутбуки, пользуются заслуже ...


Вместо выключателя - гвоздик
Если применить это несложное устройство в помещении, где свет нужен на непродолж ...


Ламповый l-V-0
Напомним: формула 1-V-0 является общей характеристикой приемника прямого усилени ...


Простой усилитель НЧ на лампах
Усилитель колебаний низкой частоты (НЧ) есть в каждом приемнике, телевизоре, маг ...


Авометр
Описываемым здесь авометром, входящим в лабораторию радиолюбителя, можно измерят ...


Легендарная "ШАРМАНКА"
Схемы генераторов, приведенные в статье, не предназначены для работы в средневол ...

 

Радио-начинающим

 
 

Схемы и описания измерительных генераторов

 
 
 

Для проверки работоспособности и налаживания радиоаппаратуры используют источники различных по форме и частоте электрических сигналов, называемые измерительными генераторами.





Наиболее часто используемым в кружке измерительным генератором является ГСС—генератор стандартных сигналов, который, вырабатывая электрические колебания частот от нескольких герц до десятков и сотен мегагерц, может быть источником амплитудно-модулированных сигналов, имитирующих сигналы радиовещательных станций. Кроме промышленного генератора, в кружке используются и самодельные простые измерительные генераторы. Конструирование их — неотъемлемая часть деятельности радиотехнических кружков 1-го и 2-го годов занятий.

Однотранзисторный генератор колебаний 3Ч, схема которого показана на рис. 60, может стать первым измерительным генератором радиолюбителя. Прибор вырабатывает синусоидальные колебания частоты 1 кГц. Сигнал такой частоты наиболее часто используют для проверки усилителей 34, трактов звуковой частоты радиовещательных приемников.
Схемы и описания измерительных генераторов


Генератор состоит из однокаскадного усилителя на транзисторе V и двойного Т-фильтра, включенного между коллектором и базой транзистора. Подобные электрические фильтры называют Т-образными, потому что схемное построение их элементов напоминает своим видом букву Т. На схеме генератора один такой фильтр образуют резисторы R2, R4 и конденсатор C2t второй — конденсаторы С/, СЗ и резистор R3. Между собой они соединены параллельно и образуют между коллектором и базой транзистора положительную обратную связь, благодаря которой усилитель возбуждается и становится генератором колебаний фиксированной частоты. Частота генерируемых колебаний определяется номиналами конденсаторов и резисторов, образующих двойной Т-фильтр. С резистора R5y являющегося нагрузкой транзистора, колебания генератора подаются через конденсатор С4 на переменный резистор R7, а с него на вход проверяемого усилителя 34. Этим резистором напряжение на выходе генератора можно плавно изменять от нуля до 1,5...2 В.

Резисторы R4 и R2, входящие в двойной Т-фильтр, совместно с резистором R1 образуют усилитель напряжения, с которого на базу транзистора подается отрицательное напряжение смещения. Резистор R6 улучшает форму генерируемых колебаний.

Чтобы проверить, работает ли генератор, достаточно подключить к его выходу головные телефоны — в них появится звук средней тональности, изменяющийся по громкости при вращении ручки переменного резистора R7.

Транзистор ГТ308В можно заменить на П416Б или другой германиевый высокочастотный транзистор со статическим коэффициентом передачи тока не менее 80. Переменный резистор R7 типа СП-1, резисторы R1— R5 — МЛ Т-0,125 или МЛТ-0,25, резистор R6—ТВО-0,125 (среди резисторов типа МЛТ нет с номинальным сопротивлением около 5 Ом). Источником питания генератора может быть батарея «Крона» или две соединенные батареи 3336Л.

Измерительный генератор (Разработан Б. Степановым г. Москва), вырабатывающий синусоидальные колебания фиксированной частоты 1 кГц, можно собрать на микросхеме К122УН1Б (рис. 61). Выходное напряжение генератора на нагрузке сопротивлением 10 кОм около 2 В.

Схемы и описания измерительных генераторов

Усилитель микросхемы самовозбуждается благодаря включению между его выходом (вывод И) и входом (вывод 4) фазосдвигающей RС-цепочки, образованной конденсаторами С1 — СЗ, резисторами R1—R5 и входным сопротивлением первого транзистора микросхемы. Частоту генерируемых колебаний можно изменять в широких пределах путем замены конденсаторов С1—СЗ конденсаторами других емкостей, но обязательно одинаковых по номиналу. С уменьшением емкости этих конденсаторов частота генерируемых колебаний увеличивается, и наоборот. Сопротивления резисторов R3 и R5, подбираемых при настройке генератора, могут быть в пределах 1,5...4,7 кОм. Электролитический конденсатор С4 устраняет отрицательную обратную связь пo переменному току, действующую между транзисторами микросхемы.

Выходное напряжение и коэффициент гармонических искажений зависят от глубины положительной обратной связи, устанавливаемой подстроечным резистором R4 во время настройки генератора. Предварительно цепочку резисторов R3—R5 заменяют переменным резистором сопротивлением 10 кОм. Сигнал с выхода генератора подают на вход «Y» осциллографа и, следя за его изображением на экране, опытным путем находят такое положение движка переменного резистора, при котором, колебания срываются. Затем измеряют сопротивления обоих плеч переменного резистора, восстанавливают соединение подстроечного резистора R4, включают в цепочку резистор R3 с номинальным сопротивлением, близким к сопротивлению верхнего плеча (от верхнего вывода до движка), а резистор R5 сопротивлением, равным сопротивлению нижнего плеча переменного резистоpa.

После этого подстроечным резистором R4 устанавливают оптимальную глубину обратной связи, при которой амплитуда колебаний будет наибольшей и без искажений.

В том случае, если к форме выходного сигнала не предъявляют жестких требований, т. е. не обращают внимания на некоторые искажения, то цепочку резисторов R3—R5 можно вообще исключить, соединив правый (по схеме) вывод конденсатора С3 непосредственно с выводом 11 микросхемы.

В генераторе вместо микросхемы К122УН1Б можно применить другие микросхемы этой серии или аналогичные им микросхемы серии К118. Напряжение источника питания микросхем с буквенными индексами В, Г и Д можно увеличить до 12 В, что позволит получить большее напряжение выходного сигнала.

Еще один измерительный генератор, которым желательно оснастить кружок радиотехнического конструирования, генератор 3Ч—ПЧ1 (рис. 62). Он вырабатывает сигнал 34 частотой 1 кГц и модулированный им по амплитуде сигнал ПЧ частотой 465 кГц. Прибор предназначен для проверки и налаживания усилителей 34 и трактов ПЧ супергетеродинных приемников. Питать его можно от любого источника постоянного тока напряжением 12... 15 В, например от трех соединенных последовательно батарей 3336Л.

Схемы и описания измерительных генераторов


Рис. 62. Генератор 34—ПЧ на блок-сборке БС-1 Разработан Г. Шульгиным (г. Москва).

Характерная особенность этого измерительного генератора заключается в том, что в нем в качестве активных элементов используется блок-сборка БС-1—малогабаритный блок, объединяющий в своем корпусе два биполярных транзистора структуры п-р-п и два полевых транзистора с каналом я-типа. Внешний вид и нумерация выводов элементов микросборки показаны на том же рис. 62 (слева). На схеме генератора транзисторы показаны без окружностей, символизирующих их корпуса, потому что транзисторы ^сборки не имеют корпусов. Если в распоряжении кружка не окажется сборок БС-1, то вместо них в монтируемых генераторах можно применить биполярные транзисторы серии КТ315 со статическим коэффициентом передачи тока не менее 50 и полевые транзисторы серии КП303 с любым буквенным индексом.

Это измерительное устройство, рекомендуемое для повторения в кружках радиотехнического конструирования 2-fo года занятий, состоит из генератора сигналов ПЧ на транзисторе VI, генератора сигналов 34 на транзисторе V3 и амплитудного модулятора на транзисторах V2 и V4. Транзистор VI генератора ПЧ включен по схеме с «заземленной» (по высокой частоте — через конденсатор С2) базой.

Режим работы транзистора по постоянному току определяется делителем напряжения R1R2 в базовой цепи и резистором R3 в эмит-терной цепи, а частота генерируемых колебаний — параметрами колебательного контура, образованного катушкой индуктивности L1 и конденсаторами СЗ—С5. Самовозбуждение возникает из-за емкостной связи между коллектором и эмиттером транзистора.

Генератор 34, как и однотранзисторный генератор, собранный по схеме на рис. 60, представляет собой каскад, охваченный положительной обратной связью через двойной Т-фильтр, состоящий из резисторов R7—R9 и конденсаторов С7—С10. Частота генерируемых колебаний зависит от номиналов этих элементов и составляет в данном случае 1 кГц.

Напряжение генератора ПЧ через конденсатор С6 поступает на затвор полеврго транзистора V2, а напряжение генератора 34 через конденсатор СП — на затвор транзистора V4. Благодаря последовательному соединению каналов полевых транзисторов, совместное воздействие на их затворы напряжений обоих генераторов приводит к тому, что напряжение ПЧ оказывается промодулированным по амплитуде. С выхода модулятора (точка соединения истока транзистора V2 со стоком транзистора V4) модулированное напряжение ПЧ через конденсатор С14 (он пропускает только колебания ПЧ) поступает на гнездо Х2 «ПЧ». Напряжение ЗЧ с выхода генератора на транзисторе V3 подается на гнездо XI «ЗЧ». В зависимости от того, какой сигнал необходим для проверки или настройки собранной конструкции, щупы генератора включают в гнезда ХЗ «Общ» и Х2 или Х3 и X1.

Усилители звуковой частоты или тракты ЗЧ приемников проверяют, начиная с оконечного каскада. Щуп в этом случае вставляют в гнездо XI, а гнездо Х3 соединяют с общим проводом проверяемого радиотехнического устройства.

Для стабилизации частоты генерируемых колебаний напряжение питания устройства поддерживается неизменным с помощью простейшего стабилизатора напряжения на стабилитроне V5 и резисторе R6.

Сравнительно небольшое число деталей позволяет собрать генератор на плате площадью 30...40см2 (например, размерами 60 X 60 мм). Правда, для этого все детали должны быть малогабаритными: конденсаторы типа КМ, КЛС, резисторы типа МЛТ-0,25, ВС-0,125 и т, п. В контуре генератора ПЧ можно использовать катушку фильтра ПЧ от транзисторных супергетеродинных приемников. Стабилитрон Д814Б при необходимости можно заменить на Д809. Плата генератора с дискретными транзисторами будет несколько больших размеров.

Налаживание измерительного устройства сводится практически к настройке генератора ПЧ на частоту 465 кГц. Контролировать работу генераторов пробника удобно по осциллографу, подключенному к затвору транзистора V2. При включении питания на его экране должно появиться характерное изображение амплитудно-модулированных колебаний с глубиной модуляции около 30%. Глубину модуляции нетрудно рассчитать, измерив на экране осциллографа наибольший (U max) и наименьший (U min) размах модулированных колебаний: т = (U max - U min) / (U max + U min).

Если генератор 34 не самовозбуждается, то параллельна конденсаторам двойного Т-моста придется подключить конденсаторы емкостью 0,002...0,01 мкФ.

Частоту генератора ПЧ, соответствующую 465 кГц, устанавливают с помощью промышленного радиовещательного супергетеродина с такой же промежуточной частотой. Поднеся генератор возможно ближе к антенному гнезду или магнитной антенне приемника, подстроечным сердечником контурной катушки L1 (а если надо, то и подбором конденсатора С3) добиваются появления в динамической головке приемника максимальной громкости звука частотой 1 кГц (примерно звук «ми» второй октавы). О точной настройке генератора на частоту 465 кГц будет свидетельствовать неизменная громкость звука при перестройке приемника в любом диапазоне.

В.Г. Борисов. Кружок радиотехнического конструирования

 
 
 
Смотри также:
 
   
Здесь Ваше мнение имеет значение
 (голосов: 9)
 

 Принт-версия