RadiobookA

радиолюбительский портал

 
Главная » Источники питания » Микросхемные стабилизаторы напряжения


Топ 10!

Календарь обновлений

«    Июнь 2018    »
ПнВтСрЧтПтСбВс
 123
45678910
11121314151617
18192021222324
252627282930 

Случайная публикация

  • Всех радиолюбителей поздравляем с Днем Радио!!!...
      День 7 мая вошел в историю мировой науки и техники как День рождения радио. Именно в этот день в 1895 году на заседании Русского физико-химического общества российский физик Александр
  • Акустическое реле...
    Акустическое реле предназначено для включения радиоприемника или магнитофона по сигналу от звукоизлучателя наручных электронных часов, имеющих функцию будильника.
  • Схема ТА-57...
    Схема телефонного аппарата ТА-57...
  • Мой любимый жучок...
    На рис. 5 привожу свою любимую схему. Собирал ее много раз, из самых разных деталей и она всегда классно работает. Номиналы деталей некритичны и могут отличаться в ту или иную сторону в полтора раза.
  • Светодиодные модули для светильников в потолки типа «Армстронг»...
    Компания Аргос представила светодиодные линейки и модули для отвёрточной сборки светильников в потолки типа «Армстронг», которые специально разработаны для использования с источниками
  • Двухламповый приемник с фиксированной настройкой...
    Приемник рассчитан на прием четырех ра-диостанций в диапазоне от 200 до 2 000 м. 3 нем используются пальчиковые лампы 1К1П (сеточный детектор с обратной связью) и 2К2П (Усилитель низкой частоты)....
  • Как простым омметром проверить полевой транзистор...
    В современной электронной аппаратуре все чаще находят применение полевые транзисторы. Разработчики используют их в блоках питания телевизоров, мониторов, видеомагнитофонов и другой аппаратуре. При

 

Источники питания

 
 

Микросхемные стабилизаторы напряжения

 
 
 

       Один из важных узлов радиоэлектронной аппаратуры - стабилизатор напряжения в блоке питания.  Еще  совсем  недавно  такие  узлы  строили  на  стабилитронах  и  транзисторах.





Общее число  элементов  стабилизатора  было  довольно  значительным,  особенно  если  от  него требовались  функции  регулирования  выходного  напряжения,  защиты  от  перегрузки  и замыкания  выхода,  ограничения  выходного  тока  на  заданном  уровне.  С  появлением специализированных  микросхем  ситуация  изменилась.  Выпускаемые  микросхемные стабилизаторы  напряжения  способны  работать  в  широких  пределах  выходных  напряжения  и тока, часто имеют встроенную систему защиты от перегрузки по току и от перегревания: как только  температура  кристалла  микросхемы  превысит  допустимое  значение,  происходит ограничение выходного тока.

       В настоящее время ассортимент отечественных и зарубежных микросхем – стабилизаторов напряжения настолько широк, что ориентироваться в нем стало уже  довольно  трудно. Помещенные  ниже  таблицы  призваны  облегчить  предварительный  выбор  микросхемного стабилизатора для того или иного электронного устройства.

       В следующей таблице представлен перечень наиболее распространенных на отечественном рынке  трехвыводных  микросхем  линейных  стабилизаторов  напряжения  на  фиксированное выходное  напряжение и их основные параметры; на Рис.1 упрощенно  показан  внешний  вид приборов,  а  также  указана их  цоколевка.  В  таблицу  включены  лишь  стабилизаторы  с выходным  напряжением  в  пределах  5...27В  - в этот интервал укладывается подавляющее большинство случаев радиолюбительской практики. Конструктивное  оформление зарубежных приборов  может  отличаться  от  показанного.  Следует  иметь  в  виду,  что  сведения  о рассеиваемой мощности при работе микросхемы с теплоотводом в паспортах приборов обычно не указывают, поэтому в таблицах даны некоторые усредненные ее значения, полученные из графиков, имеющихся в  документации.  Отметим  также,  что  микросхемы  одной  серии,  но  на разные  значения  напряжения,  по  рассеиваемой мощности  могут  различаться.  Также существует и иная маркировка. Например, перед обозначением стабилизаторов групп 78, 79, 78L, 79L, 78М, 79М, перечисленных в таблице, в действительности могут присутствовать одна или две буквы, кодирующие, как правило, фирму изготовитель. Позади указанных в таблице обозначений также могут быть буквы и цифры, указывающие на те или иные конструктивные или эксплуатационные особенности микросхемы.

       Типовая  схема  включения  микросхемных  стабилизаторов  на  фиксированное  выходное напряжение показана на Рис.2 (а и б). Для всех микросхем емкость входного конденсатора С1 должна быть не менее 2,2 мкФ для керамических или оксидных танталовых и не менее 10 мкФ - для алюминиевых оксидных конденсаторов, а выходного конденсатора С2 - не менее 1 и 10 мкФ соответственно. Некоторые микросхемы  допускают и меньшую емкость, но указанные значения гарантируют устойчивую работу любых стабилизаторов. Роль входного может исполнять конденсатор  сглаживающего  фильтра, если он расположен не далее 70 мм от корпуса микросхемы.

       Если требуется нестандартное значение  стабилизированного выходного  напряжения  или плавное его регулирование, удобно использовать специализированные  регулируемые микросхемные стабилизаторы, поддерживающие  напряжение  1,25 В между выходом и управляющим выводом. Их перечень представлен в следующей таблице.

       На Рис.3 изображена типовая схема включения для  стабилизаторов с регулирующим элементом в плюсовом проводе. Резисторы R1 и R2 образуют внешний регулируемый делитель напряжения, который входит в цепь установки уровня выходного напряжения.  Обратим внимание на то, что в отличие от стабилизаторов на фиксированное выходное  напряжение, регулируемые без нагрузки не работают. Минимальное значение выходного тока маломощных регулируемых стабилизаторов равно 2,5...5 мА и 5... 10 мА - мощных. В большинстве случаев применения нагрузкой служит резистивный делитель напряжения R1 R2 (см. Рис.3).

       По этой схеме можно включать и стабилизаторы с фиксированным выходным напряжением. Однако,  во-первых,  потребляемый  ими  ток  значительно  больше  (2...4  мА)  и,  во-вторых,  он менее  стабилен  при  изменении  выходного  тока  и  входного  напряжения.  По  этим  причинам максимально  возможного  коэффициента  стабилизации  устройства  достичь  не  удастся.  Для снижения  уровня  пульсаций  на  выходе,  особенно  при  большем  выходном  напряжении, рекомендуется  включать  сглаживающий  конденсатор  СЗ  емкостью  10  мкФ  и  более.  К конденсаторам  С1  и  С2  требования  такие  же,  как  и  к  соответствующим  конденсаторам фиксированных стабилизаторов.

       Если стабилизатор работает при максимальном выходном напряжении, то при  случайном замыкании входной цепи или отключении источника питания микросхема  оказывается под большим обратным напряжением со стороны нагрузки и может  быть выведена из строя. Для защиты  микросхемы по выходу в таких ситуациях  параллельно  ей  включают  защитный  диод VD1. Другой  защитный  диод - VD2 - защищает микросхему со стороны заряженного конденсатора СЗ. Диод быстро разряжает  этот конденсатор при аварийном замыкании выходной или входной цепи стабилизатора.

Дригалкин В.В. Школа начинающего радиолюбителя с учетом современной электроники (2-е издание)  2011


Здесь Ваше мнение имеет значение  -
 поставьте вашу оценку (оценили - 1 раз)
 
 


 
 
 
Смотри также:
 
   

 Принт-версия